首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1031篇
  免费   314篇
  国内免费   60篇
测绘学   35篇
大气科学   4篇
地球物理   805篇
地质学   397篇
海洋学   45篇
天文学   8篇
综合类   33篇
自然地理   78篇
  2024年   1篇
  2023年   6篇
  2022年   14篇
  2021年   17篇
  2020年   21篇
  2019年   32篇
  2018年   23篇
  2017年   47篇
  2016年   49篇
  2015年   57篇
  2014年   68篇
  2013年   62篇
  2012年   44篇
  2011年   57篇
  2010年   33篇
  2009年   58篇
  2008年   57篇
  2007年   63篇
  2006年   62篇
  2005年   55篇
  2004年   51篇
  2003年   55篇
  2002年   40篇
  2001年   23篇
  2000年   38篇
  1999年   48篇
  1998年   39篇
  1997年   30篇
  1996年   45篇
  1995年   31篇
  1994年   28篇
  1993年   23篇
  1992年   14篇
  1991年   20篇
  1990年   19篇
  1989年   12篇
  1988年   11篇
  1987年   7篇
  1986年   7篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   17篇
  1974年   1篇
  1954年   4篇
排序方式: 共有1405条查询结果,搜索用时 109 毫秒
991.
After the 2005 Kashmir earthquake, we mapped surface ground fractures in Tangdhar, Uri, Rajouri and Punch sectors and liquefaction features in Jammu area lying close to the eastern side of the Line of Control (LOC) in Kashmir, India. The NW trending ground fractures occurred largely in the hanging wall zone of the southeastern extension of the causative fault in Tangdhar and Uri sectors. The principal compressive stress deduced from the earthquake induced ground fractures is oriented at N10°, whereas the causative Balakot–Bagh fault strikes 330°. The fault-plane solution indicates primarily SW thrusting of the causative fault with a component of strike–slip motion. The ground fractures reflect pronounced strike–slip together with some tensile component. The Tangdhar area showing left-lateral strike–slip motion lies on the hanging wall, and the Uri region showing right-lateral strike–slip movement is located towards the southeastern extension of the causative fault zone. The shear fractures are related to static stress that was responsible for the failure of causative fault. The tensile fractures with offsets are attributed to combination of both static and dynamic stresses, and the fractures and openings without offsets owe their origin due to dynamic stress. In Punch–Rajouri and Jammu area, which lies on the footwall, the fractures and liquefactions were generated by dynamic stress. The occurrence of liquefaction features in the out board part of the Himalayan range front near Jammu is suggestive of stress transfer  230 km southeast of the epicenter. The Balakot–Bagh Fault (BBF), the Muzaffarabad anticline, the rupture zone of causative fault and the zone of aftershocks — all are aligned in a  25 km wide belt along the NW–SE trending regional Himalayan strike of Kashmir region and lying between the MBT and the Riasi Thrust (Murree Thrust), suggesting a seismogenic zone that may propagate towards the southeast to trigger an earthquake in the eastern part of the Kashmir region.  相似文献   
992.
The co-seismic deformations produced during the September 27, 2003 Chuya earthquake (Ms = 7.5) that affected the Gorny Altai, Russia, are described and discussed along a 30 km long segment. The co-seismic deformations have manifested themselves both in unconsolidated sediments as R- and R′-shears, extension fractures and contraction structures, and in bedrock as the reactivation of preexisting schistosity zones and individual fractures, as well as development of new ruptures and coarse crushing zones. It has been established that the pattern of earthquake ruptures represents a typical fault zone trending NW–SE with a width reaching 4–5 km and a dextral strike–slip kinematics. The initial stress field that produced the whole structural pattern of co-seismic deformations during the Chuya earthquake, is associated with a transcurrent regime with a NNW–SSE, almost N–S, trending of compressional stress axis (σ1), and a ENE–WSW, almost E–W, trending of tensional stress axis (σ3). The state of stress in the newly-formed fault zone is relatively uniform. The local stress variations are expressed in insignificant deviation of σ1 from N–S to NW–SE or NE–SW, in short-term fluctuations of relative stress values in keeping their spatial orientations, or in a local increase of the plunge angle of the σ1. The geometry of the fault zone associated with the Chuya earthquake has been compared with the mechanical model of fracturing in large continental fault zones with dextral strike–slip kinematics. It is apparent that the observed fracture pattern corresponds to the late disjunctive stage of faulting when the master fault is not fully developed but its segments are already clearly defined. It has been shown that fracturing in widely different rocks follows the common laws of the deformation of solid bodies, even close to the Earth surface, and with high rates of movements.  相似文献   
993.
本文提出了一种既能反映裂隙岩体的渗透特性,又相对准确的确定裂隙岩体渗透张量的方法。首先通过裂隙在空间展布状况的测量,用统计学方法初步确定裂隙岩体的渗透张量,获得渗透主值及主方向,然后根据野外压水试验得到的岩体透水率,利用巴布什金公式计算各试段岩体的渗透系数,求出修正系数,从而得到研究区裂隙岩体的修正渗透张量。并运用上述方法对蒲石河抽水蓄能电站上水库坝址区裂隙岩体的渗透张量进行了计算。结果表明,该方法能较好地刻画裂隙岩体渗透性的各向异性特征,可为岩体渗透性分区及防渗帷幕的优化提供科学依据。  相似文献   
994.
Two-dimensional finite element model was created in this work to investigate the stress distribution within rock-like samples with offset open non-persistent joints under uniaxial loading. The results of this study have explained the fracture mechanisms observed in tests on rock-like material with open non-persistent offset joints (Mughieda and Alzo’ubi, Geotech Geol Eng J 22:545–562, 2004). Finite element code SAP2000 was used to study the stresses distribution within the specimens. Four-noded isoperimetric plain strain element with two degrees of freedom per node, and the three-noded constant strain triangular element with two degree of freedom per node were used in the present study. The results of the present study showed that the tensile stress in the bridge area caused coalescence for specimens with overlapped preexisting cracks (joints) while the coalescence of the secondary cracks, due to shear stress, caused the failure of specimens with non-overlapping cracks.  相似文献   
995.
考虑挤压式顶管施工时,不可避免会对周围的环境造成影响。根据土塑性力学的基本原理,考虑土体具有不同于其他材料的剪胀特性和塑性变形,按不相适应的塑性流动法则计算无限体内柱形孔穴扩张在周围土体内产生应力场和位移场。借助源一汇影像手段和Cemiti解进行剪应力修正,推得在顶管挤入过程中周围土体内的位移场和应力场表达式.基于此,研究了土层数、管径、埋深等各参数对竖向位移的影响的敏感性。最终得出顶管中心埋深h、顶管外半径Ru是影响竖向位移的最关键因素的结论。  相似文献   
996.
High-density array MT soundings of the crust in the seismically active northern Tien Shan were performed using Phoenix MTU-5 stations in the Bishkek Geodynamic Polygon, at the junction of the Chu basin and the Kyrgyz Range. The MT transfer functions were determined to an accuracy of 1–2% (amplitude) and about 0.5–0.8 deg (phase) in most of 145 soundings. Preliminary analysis of the collected data aimed at estimating the geoelectrical dimensionality. The Bahr decomposition analysis indicated the presence of local 3D structures in the crust of the area superposed on the regional 2D structure.  相似文献   
997.
In this paper, we consider the upscaling of Hooke's law and its parameters on the fine scale, to a similar law with upscaled parameters on a larger scale. It is assumed that the fine scale material properties of the rock are imperfectly layered. In the governing equations, the deviations from perfect layering introduce a small parameter that can be used in perturbation series expansions for the stress, the strain, and the displacement. In the approximation of order zero the upscaled compliance matrix contains the well-known Backus parameters; this approximation holds exactly for a perfect layering. However, many natural rock types are imperfectly layered and in that case the approximation of order zero may not be sufficiently accurate. Therefore, we consider also the first order corrections. The derivation and results are presented both for the most general case and for the much simpler case in which the fine scale Poisson ratio may be assumed constant. From thermodynamic principles, it follows that the compliance tensor is symmetric on the fine scale. However, it is shown that the argument for symmetry cannot be extended to upscaled rigidities. One of the most important conclusions is that upscaled compliance tensors are nonsymmetric when there are trends in the deviations from perfect layering.  相似文献   
998.
日本海及中国东北地震的深度分布及其应力状态   总被引:25,自引:1,他引:24       下载免费PDF全文
本文分析了日本海及中国东北的地震深度分布。证实了日本本州北部至中国东北的贝尼奥夫带(Benioff)基本是连续的,该带的倾向约为北85°西,倾角约为29°,深度在150公里以下贝尼奥夫带厚度约为20公里。研究了日本本州北部至中国东北的震级M_b≥5.0地震的震源机制解,发现中国东北地壳应力场与日本海地壳的应力场方向一致,来源于太平洋板块的挤压。在俯冲带上,深度在100公里到200公里之间的情况较为复杂,大多数地震显示的主压应力方向与贝尼奥夫带的倾向、倾角一致,有的T轴取向与贝尼奥夫带的倾向、倾角一致,有的特征方向与贝尼奥夫带倾向、倾角均不一致。深度在200公里至500公里之间,主压应力方向近于水平,并与贝尼奥夫带走向垂直,张应力轴相对集中。深度大于500公里时,主压应力方向与贝尼奥夫带的倾向、倾角一致,张应力轴相对集中  相似文献   
999.
鄂西渝东区构造裂缝发育特征及力学机制   总被引:1,自引:0,他引:1  
针对鄂西渝东区隔档式褶皱发育的构造特点,结合区域构造演化史,分别以隔档式褶皱和正弦曲线几何形态的褶皱建立模型,用有限元法模拟了褶皱不同构造部位的应力场分布特征。褶皱外侧为张应力集中区,内侧为压应力集中区,且应力矢量与地层产状平行,二者以中部既无明显挤压、亦无明显拉张的中和面为分界。通过野外露头和岩心观察,总结了鄂西渝东区构造裂缝发育的三种形式:具多层介质的非能干层中发育顺层裂缝;向斜内侧、背斜外侧的能干层中发育高角度剪切缝;背斜外侧、内侧具多层介质的非能干层中发育顺层裂缝与高角度缝共生的网状缝。这种特征与模拟结果呈现较高程度的一致性,可根据应力场模拟成果和裂缝发育地层的能干性进行合理解释。复向斜中的隆起区可作为页岩气勘探的重要目标。  相似文献   
1000.
This paper presents a compilation of 16 present-day stress tensors along the southern Caribbean plate boundary zone (PBZ), and particularly in western and along northern Venezuela. As a trial, these new stress tensors along PBZ have been calculated from inversion of 125 focal mechanism solutions (FMS) by applying the Angelier & Mechler's dihedral method, which were originally gathered by the first author and published in 2005. These new tensors are compared to those 59 tensors inverted from fault-slip data measured only in Plio-Quaternary sedimentary rocks, compiled in Audemard et al. (2005), which were originally calculated by several researchers through the inversion methods developed by Angelier and Mechler or Etchecopar et al.The two sets of stress tensors, one derived from geological data and the other one from seismological data, compare very well throughout the PBZ in terms of both stress orientation and shape of the stress tensor. This region is characterized by a compressive strike-slip (transpressional senso lato), occasionally compressional, regime from the southern Mérida Andes on the southwest to the gulf of Paria in the east. Significant changes in direction of the maximum horizontal stress (σH = σ1) can be established along it though. The σ1 direction varies progressively from nearly east-west in the southern Andes (SW Venezuela) to between NW-SE and NNW-SSE in northwestern Venezuela; this direction remaining constant across northern Venezuela, from Colombia to Trinidad. In addition, the σV defined by inversion of focal mechanisms or by the shape of the stress ellipsoid derived from the Etchecopar et al.'s method better characterize whether the stress regime is transpressional or compressional, or even very rarely trantensional at local scale.The orientation and space variation of this regional stress field in western Venezuela results from the addition of the two major neighbouring interplate maximum horizontal stress orientations (σH): roughly east-west trending stress across the Nazca-South America type-B subduction along the pacific coast of Colombia and NNW-SSE oriented one across the southern Caribbean PBZ. Meanwhile, northern Venezuela, although dextral strike-slip (SS) is the dominant process, NW-SE to NNW-SSE compression is also taking place, which are both also supported by recent GPS results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号